Nuprl Lemma : strong-continuity2-half-squash-surject-biject

[T,S,U:Type].
  ((U ⊆r ℕ)
   (∃r:ℕ ⟶ U. ∀x:U. ((r x) x ∈ U))
   (∃g:ℕ ⟶ T. Surj(ℕ;T;g))
   (∃h:S ⟶ U. Bij(S;U;h))
   (∀F:(ℕ ⟶ T) ⟶ S
        ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (S?)
           ∀f:ℕ ⟶ T
             ((∃n:ℕ((M f) (inl (F f)) ∈ (S?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (S?) supposing ↑isl(M f))))))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) surject: Surj(A;B;f) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] exists: x:A. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B squash: T subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T}
Lemmas referenced :  strong-continuity2_biject_retract-ext strong-continuity2-half-squash nat_wf subtype_rel_self compose_wf exists_wf biject_wf surject_wf all_wf equal_wf subtype_rel_wf strong-continuity2_wf trivial-quotient-true strong-continuity2_functionality_surject int_seg_wf unit_wf2 subtype_rel_dep_function int_seg_subtype_nat false_wf isect_wf assert_wf isl_wf implies-quotient-true2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesis independent_isectElimination because_Cache independent_pairFormation independent_functionElimination sqequalRule imageMemberEquality hypothesisEquality baseClosed dependent_functionElimination lambdaEquality applyEquality functionExtensionality functionEquality cumulativity universeEquality natural_numberEquality setElimination rename unionEquality productEquality inlEquality

Latex:
\mforall{}[T,S,U:Type].
    ((U  \msubseteq{}r  \mBbbN{})
    {}\mRightarrow{}  (\mexists{}r:\mBbbN{}  {}\mrightarrow{}  U.  \mforall{}x:U.  ((r  x)  =  x))
    {}\mRightarrow{}  (\mexists{}g:\mBbbN{}  {}\mrightarrow{}  T.  Surj(\mBbbN{};T;g))
    {}\mRightarrow{}  (\mexists{}h:S  {}\mrightarrow{}  U.  Bij(S;U;h))
    {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  S
                \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (S?)
                      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
                          ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                          \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))))



Date html generated: 2019_06_20-PM-03_17_37
Last ObjectModification: 2019_06_20-PM-03_13_04

Theory : continuity


Home Index