Nuprl Lemma : strong-continuity2-half-squash

[T:Type]. ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(strong-continuity2(T;F)) supposing (T ⊆r ℕ) ∧ (↓T)


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) quotient: x,y:A//B[x; y] nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] squash: T and: P ∧ Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B squash: T all: x:A. B[x] prop: sq-basic-strong-continuity: sq-basic-strong-continuity(T;F) sq_exists: x:A [B[x]] basic-strong-continuity: basic-strong-continuity(T;F) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q guard: {T}
Lemmas referenced :  Kleene-M_wf subtype_rel_wf nat_wf squash_wf subtype_rel_self quotient_wf basic-strong-continuity_wf true_wf equiv_rel_true implies-quotient-true2 strong-continuity2_wf trivial-quotient-true basic-implies-strong-continuity2-ext istype-nat istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis imageElimination imageMemberEquality hypothesisEquality baseClosed rename Error :lambdaFormation_alt,  extract_by_obid isectElimination Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :universeIsType,  applyEquality Error :lambdaEquality_alt,  Error :inhabitedIsType,  independent_isectElimination independent_functionElimination because_Cache Error :functionIsType,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity2(T;F))  supposing  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)



Date html generated: 2019_06_20-PM-02_51_16
Last ObjectModification: 2019_02_09-PM-11_56_09

Theory : continuity


Home Index