Nuprl Lemma : basic-implies-strong-continuity2-ext

[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (basic-strong-continuity(T;F)  strong-continuity2(T;F))


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) basic-strong-continuity: basic-strong-continuity(T;F) nat: uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T int?: int?(x) it: isl: isl(x) btrue: tt bfalse: ff is_int: is_int(x) basic-implies-strong-continuity2 uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  basic-implies-strong-continuity2 lifting-strict-callbyvalue istype-void strict4-decide lifting-strict-decide lifting-strict-isint
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (basic-strong-continuity(T;F)  {}\mRightarrow{}  strong-continuity2(T;F))



Date html generated: 2019_06_20-PM-02_50_27
Last ObjectModification: 2019_03_26-AM-07_45_02

Theory : continuity


Home Index