Nuprl Lemma : basic-implies-strong-continuity2-ext
∀[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (basic-strong-continuity(T;F) ⇒ strong-continuity2(T;F))
Proof
Definitions occuring in Statement : 
strong-continuity2: strong-continuity2(T;F), 
basic-strong-continuity: basic-strong-continuity(T;F), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
int?: int?(x), 
it: ⋅, 
isl: isl(x), 
btrue: tt, 
bfalse: ff, 
is_int: is_int(x), 
basic-implies-strong-continuity2, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a
Lemmas referenced : 
basic-implies-strong-continuity2, 
lifting-strict-callbyvalue, 
istype-void, 
strict4-decide, 
lifting-strict-decide, 
lifting-strict-isint
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (basic-strong-continuity(T;F)  {}\mRightarrow{}  strong-continuity2(T;F))
Date html generated:
2019_06_20-PM-02_50_27
Last ObjectModification:
2019_03_26-AM-07_45_02
Theory : continuity
Home
Index