Nuprl Lemma : basic-implies-strong-continuity2
∀[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (basic-strong-continuity(T;F) 
⇒ strong-continuity2(T;F))
Proof
Definitions occuring in Statement : 
strong-continuity2: strong-continuity2(T;F)
, 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
member: t ∈ T
, 
prop: ℙ
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
bool: 𝔹
, 
ifthenelse: if b then t else f fi 
, 
all: ∀x:A. B[x]
, 
b-union: A ⋃ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
false: False
, 
not: ¬A
, 
isl: isl(x)
, 
int?: int?(x)
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
tunion: ⋃x:A.B[x]
, 
unit: Unit
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
guard: {T}
, 
sq_type: SQType(T)
, 
has-value: (a)↓
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
true: True
, 
assert: ↑b
, 
btrue: tt
, 
bfalse: ff
, 
strong-continuity2: strong-continuity2(T;F)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
basic-strong-continuity_wf, 
istype-nat, 
istype-universe, 
int_seg_wf, 
it_wf, 
unit_wf2, 
product_subtype_base, 
int_subtype_base, 
set_subtype_base, 
ifthenelse_wf, 
bool_wf, 
tunion_subtype_base, 
product-value-type, 
int-value-type, 
istype-int, 
le_wf, 
set-value-type, 
bunion-value-type, 
nat_wf, 
b-union_wf, 
int?_wf, 
btrue_neq_bfalse, 
bfalse_wf, 
btrue_wf, 
istype-sqequal, 
equal-wf-base, 
sq_stable__all, 
sq_stable__equal, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
subtype_base_sq, 
value-type-has-value, 
subtype_rel_self, 
istype-false, 
int_seg_subtype_nat, 
subtype_rel_function, 
istype-true, 
istype-assert, 
unit_subtype_base, 
union_subtype_base, 
equal-wf-base-T, 
squash_wf, 
iff_weakening_equal, 
true_wf, 
equal_wf, 
mu_wf, 
bool_subtype_base, 
mu-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionIsType, 
because_Cache, 
instantiate, 
universeEquality, 
setElimination, 
rename, 
dependent_pairFormation_alt, 
natural_numberEquality, 
lambdaEquality_alt, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
inrEquality_alt, 
inlEquality_alt, 
applyEquality, 
unionElimination, 
independent_pairFormation, 
inhabitedIsType, 
intEquality, 
sqequalRule, 
independent_isectElimination, 
productEquality, 
closedConclusion, 
voidElimination, 
applyLambdaEquality, 
productIsType, 
dependent_set_memberEquality_alt, 
productElimination, 
sqequalBase, 
setIsType, 
unionIsType, 
baseClosed, 
baseApply, 
sqequalIntensionalEquality, 
setEquality, 
unionEquality, 
imageElimination, 
equalityElimination, 
axiomEquality, 
functionIsTypeImplies, 
imageMemberEquality, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
cumulativity, 
isintReduceTrue, 
callbyvalueReduce, 
independent_pairEquality, 
isectIsType, 
dependent_pairEquality_alt
Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (basic-strong-continuity(T;F)  {}\mRightarrow{}  strong-continuity2(T;F))
Date html generated:
2020_05_19-PM-10_04_31
Last ObjectModification:
2020_01_04-PM-08_04_32
Theory : continuity
Home
Index