Nuprl Lemma : basic-implies-strong-continuity2

[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (basic-strong-continuity(T;F)  strong-continuity2(T;F))


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) basic-strong-continuity: basic-strong-continuity(T;F) nat: uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q basic-strong-continuity: basic-strong-continuity(T;F) member: t ∈ T prop: sq_exists: x:A [B[x]] exists: x:A. B[x] nat: bool: 𝔹 ifthenelse: if then else fi  all: x:A. B[x] b-union: A ⋃ B so_apply: x[s] so_lambda: λ2x.t[x] cand: c∧ B and: P ∧ Q uimplies: supposing a false: False not: ¬A isl: isl(x) int?: int?(x) subtype_rel: A ⊆B pi2: snd(t) tunion: x:A.B[x] unit: Unit sq_stable: SqStable(P) squash: T top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} sq_type: SQType(T) has-value: (a)↓ less_than': less_than'(a;b) le: A ≤ B true: True assert: b btrue: tt bfalse: ff strong-continuity2: strong-continuity2(T;F) rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  basic-strong-continuity_wf istype-nat istype-universe int_seg_wf it_wf unit_wf2 product_subtype_base int_subtype_base set_subtype_base ifthenelse_wf bool_wf tunion_subtype_base product-value-type int-value-type istype-int le_wf set-value-type bunion-value-type nat_wf b-union_wf int?_wf btrue_neq_bfalse bfalse_wf btrue_wf istype-sqequal equal-wf-base sq_stable__all sq_stable__equal istype-le int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties subtype_base_sq value-type-has-value subtype_rel_self istype-false int_seg_subtype_nat subtype_rel_function istype-true istype-assert unit_subtype_base union_subtype_base equal-wf-base-T squash_wf iff_weakening_equal true_wf equal_wf mu_wf bool_subtype_base mu-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution universeIsType cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis functionIsType because_Cache instantiate universeEquality setElimination rename dependent_pairFormation_alt natural_numberEquality lambdaEquality_alt independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype inrEquality_alt inlEquality_alt applyEquality unionElimination independent_pairFormation inhabitedIsType intEquality sqequalRule independent_isectElimination productEquality closedConclusion voidElimination applyLambdaEquality productIsType dependent_set_memberEquality_alt productElimination sqequalBase setIsType unionIsType baseClosed baseApply sqequalIntensionalEquality setEquality unionEquality imageElimination equalityElimination axiomEquality functionIsTypeImplies imageMemberEquality isect_memberEquality_alt int_eqEquality approximateComputation cumulativity isintReduceTrue callbyvalueReduce independent_pairEquality isectIsType dependent_pairEquality_alt

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (basic-strong-continuity(T;F)  {}\mRightarrow{}  strong-continuity2(T;F))



Date html generated: 2020_05_19-PM-10_04_31
Last ObjectModification: 2020_01_04-PM-08_04_32

Theory : continuity


Home Index