Nuprl Lemma : int?_wf

[T:Type]. ∀[x:T]. (int?(x) ∈ {y:ℤx}  T) supposing value-type(T) ∧ (T ⊆Base)


Proof




Definitions occuring in Statement :  int?: int?(x) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  union: left right int: base: Base universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int?: int?(x) and: P ∧ Q has-value: (a)↓ subtype_rel: A ⊆B top: Top
Lemmas referenced :  value-type-has-value has-value_wf_base is-exception_wf istype-sqequal int_subtype_base istype-top istype-void istype-int value-type_wf subtype_rel_wf base_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin callbyvalueReduce extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis isintCases divergentSqle because_Cache baseClosed applyEquality isintReduceTrue equalityTransitivity equalitySymmetry Error :inlEquality_alt,  Error :dependent_set_memberEquality_alt,  Error :inhabitedIsType,  axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  voidElimination Error :inrEquality_alt,  Error :setIsType,  baseApply closedConclusion axiomEquality Error :universeIsType,  Error :productIsType,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  (int?(x)  \mmember{}  \{y:\mBbbZ{}|  y  \msim{}  x\}    +  T)  supposing  value-type(T)  \mwedge{}  (T  \msubseteq{}r  Base)



Date html generated: 2019_06_20-AM-11_33_10
Last ObjectModification: 2019_02_07-PM-00_06_32

Theory : int_1


Home Index