Nuprl Lemma : tunion_subtype_base

[A:Type]. ∀[B:A ⟶ Type].  ⋃a:A.B[a] ⊆Base supposing ∀a:A. (B[a] ⊆Base)


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B tunion: x:A.B[x] uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a tunion: x:A.B[x] subtype_rel: A ⊆B pi2: snd(t) so_apply: x[s] prop: so_lambda: λ2x.t[x] all: x:A. B[x]
Lemmas referenced :  base_wf subtype_rel_wf all_wf image-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality imageElimination productElimination thin sqequalHypSubstitution hypothesis lemma_by_obid isectElimination productEquality hypothesisEquality applyEquality baseClosed axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mcup{}a:A.B[a]  \msubseteq{}r  Base  supposing  \mforall{}a:A.  (B[a]  \msubseteq{}r  Base)



Date html generated: 2016_05_13-PM-03_19_31
Last ObjectModification: 2016_01_14-PM-04_32_01

Theory : subtype_0


Home Index