Step
*
of Lemma
basic-implies-strong-continuity2
No Annotations
∀[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ]. (basic-strong-continuity(T;F)
⇒ strong-continuity2(T;F))
BY
{ (Auto THEN UnfoldTopAb (-1)) }
1
1. [T] : Type
2. [F] : (ℕ ⟶ T) ⟶ ℕ
3. ∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ ⋃ (ℕ × ℕ)) [(∀f:ℕ ⟶ T
((∃n:ℕ. ((M n f) = (F f) ∈ ℕ))
∧ (∀n:ℕ. (M n f) = (F f) ∈ ℕ supposing M n f is an integer)
∧ (∀n,m:ℕ. ((n ≤ m)
⇒ M n f is an integer
⇒ M m f is an integer))))]
⊢ strong-continuity2(T;F)
Latex:
Latex:
No Annotations
\mforall{}[T:Type]. \mforall{}[F:(\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}]. (basic-strong-continuity(T;F) {}\mRightarrow{} strong-continuity2(T;F))
By
Latex:
(Auto THEN UnfoldTopAb (-1))
Home
Index