Nuprl Lemma : basic-strong-continuity_wf
∀[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (basic-strong-continuity(T;F) ∈ ℙ)
Proof
Definitions occuring in Statement : 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
basic-strong-continuity: basic-strong-continuity(T;F)
, 
bsc-body: bsc-body(F;M;f)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
Lemmas referenced : 
sq_exists_wf, 
nat_wf, 
int_seg_wf, 
b-union_wf, 
bsc-body_wf, 
istype-nat, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
productEquality, 
Error :lambdaEquality_alt, 
Error :functionIsType, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (basic-strong-continuity(T;F)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_50_12
Last ObjectModification:
2019_02_11-AM-11_18_18
Theory : continuity
Home
Index