Nuprl Lemma : bsc-body_wf

[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ ⋃ (ℕ × ℕ))]. ∀[f:ℕ ⟶ T].  (bsc-body(F;M;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  bsc-body: bsc-body(F;M;f) int_seg: {i..j-} nat: b-union: A ⋃ B uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bsc-body: bsc-body(F;M;f) prop: and: P ∧ Q exists: x:A. B[x] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q all: x:A. B[x] b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T}
Lemmas referenced :  nat_wf subtype_rel_function int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self equal-wf-base set_subtype_base le_wf istype-int int_subtype_base product_subtype_base isect_wf true_wf false_wf equal_wf istype-universe all_wf istype-nat b-union_wf istype-void subtype_base_sq base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productEquality extract_by_obid hypothesis applyEquality hypothesisEquality sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache independent_isectElimination independent_pairFormation Error :lambdaFormation_alt,  Error :inhabitedIsType,  imageElimination productElimination unionElimination equalityElimination intEquality Error :lambdaEquality_alt,  Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination functionEquality isintReduceTrue axiomEquality Error :functionIsType,  Error :universeIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality voidElimination cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}  \mcup{}  (\mBbbN{}  \mtimes{}  \mBbbN{}))].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].
    (bsc-body(F;M;f)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_50_08
Last ObjectModification: 2019_02_11-AM-11_17_31

Theory : continuity


Home Index