Nuprl Lemma : bsc-body_wf
∀[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ ⋃ (ℕ × ℕ))]. ∀[f:ℕ ⟶ T].  (bsc-body(F;M;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
bsc-body: bsc-body(F;M;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
b-union: A ⋃ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bsc-body: bsc-body(F;M;f)
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
nat_wf, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
product_subtype_base, 
isect_wf, 
true_wf, 
false_wf, 
equal_wf, 
istype-universe, 
all_wf, 
istype-nat, 
b-union_wf, 
istype-void, 
subtype_base_sq, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
intEquality, 
Error :lambdaEquality_alt, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
isintReduceTrue, 
axiomEquality, 
Error :functionIsType, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality, 
voidElimination, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}  \mcup{}  (\mBbbN{}  \mtimes{}  \mBbbN{}))].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].
    (bsc-body(F;M;f)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_50_08
Last ObjectModification:
2019_02_11-AM-11_17_31
Theory : continuity
Home
Index