Step
*
of Lemma
strong-continuity2-half-squash
∀[T:Type]. ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(strong-continuity2(T;F)) supposing (T ⊆r ℕ) ∧ (↓T)
BY
{ ((UnivCD THENA Auto)
THEN (Assert ⇃(basic-strong-continuity(T;F)) BY
(UseWitness ⌜Kleene-M(F)⌝⋅ THEN Auto))
THEN (UnHalfSquash THENA Auto)
THEN (UnHalfSquashConcl THENA Auto)
THEN InstLemma `basic-implies-strong-continuity2-ext` [⌜T⌝;⌜F⌝]⋅
THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}F:(\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}. \00D9(strong-continuity2(T;F)) supposing (T \msubseteq{}r \mBbbN{}) \mwedge{} (\mdownarrow{}T)
By
Latex:
((UnivCD THENA Auto)
THEN (Assert \00D9(basic-strong-continuity(T;F)) BY
(UseWitness \mkleeneopen{}Kleene-M(F)\mkleeneclose{}\mcdot{} THEN Auto))
THEN (UnHalfSquash THENA Auto)
THEN (UnHalfSquashConcl THENA Auto)
THEN InstLemma `basic-implies-strong-continuity2-ext` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}F\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index