Nuprl Lemma : strong-continuity2_functionality_surject

[T,S:Type].
  ∀g:T ⟶ S. (Surj(T;S;g)  (∀F:(ℕ ⟶ S) ⟶ ℕ(strong-continuity2(T;λf.(F (g f)))  strong-continuity2(S;F))))


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) surject: Surj(A;B;f) compose: g nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  surject_wf strong-continuity2_wf strong-continuity3_functionality_surject compose_wf nat_wf strong-continuity2-iff-3
Rules used in proof :  universeEquality dependent_functionElimination because_Cache independent_functionElimination productElimination cumulativity hypothesis functionEquality functionExtensionality applyEquality lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,S:Type].
    \mforall{}g:T  {}\mrightarrow{}  S
        (Surj(T;S;g)
        {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.  (strong-continuity2(T;\mlambda{}f.(F  (g  o  f)))  {}\mRightarrow{}  strong-continuity2(S;F))))



Date html generated: 2017_09_29-PM-06_05_15
Last ObjectModification: 2017_09_04-PM-00_14_08

Theory : continuity


Home Index