Nuprl Lemma : strong-continuity2_functionality_surject
∀[T,S:Type].
  ∀g:T ⟶ S. (Surj(T;S;g) 
⇒ (∀F:(ℕ ⟶ S) ⟶ ℕ. (strong-continuity2(T;λf.(F (g o f))) 
⇒ strong-continuity2(S;F))))
Proof
Definitions occuring in Statement : 
strong-continuity2: strong-continuity2(T;F)
, 
surject: Surj(A;B;f)
, 
compose: f o g
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
surject_wf, 
strong-continuity2_wf, 
strong-continuity3_functionality_surject, 
compose_wf, 
nat_wf, 
strong-continuity2-iff-3
Rules used in proof : 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
productElimination, 
cumulativity, 
hypothesis, 
functionEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T,S:Type].
    \mforall{}g:T  {}\mrightarrow{}  S
        (Surj(T;S;g)
        {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.  (strong-continuity2(T;\mlambda{}f.(F  (g  o  f)))  {}\mRightarrow{}  strong-continuity2(S;F))))
Date html generated:
2017_09_29-PM-06_05_15
Last ObjectModification:
2017_09_04-PM-00_14_08
Theory : continuity
Home
Index