Step
*
of Lemma
monotone-bar-induction3-2
∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
((∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n])))
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ Q[n;s]))
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. Q[n + 1;s.m@n])
⇒ Q[n;s]))
⇒ (∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha]))
⇒ ⇃(Q[0;λx.⊥]))
BY
{ (Auto
THEN RenameVar `bar' (-1)
THEN (InstLemma `strong-continuity-rel` [⌜λf,n. (B n f)⌝;⌜bar⌝]⋅ THENA Auto)
THEN MoveToConcl (-1)
THEN (BLemma `implies-quotient-true` THENA Auto)
THEN (D 0 THENA Auto)
THEN ExRepD) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ Q[n;s])
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. Q[n + 1;s.m@n])
⇒ Q[n;s])
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
7. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn. (((λf,n. (B n f)) f k) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?))))\000C)
⊢ Q[0;λx.⊥]
Latex:
Latex:
\mforall{}B,Q:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}.
((\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} (\mforall{}m:\mBbbN{}. B[n + 1;s.m@n])))
{}\mRightarrow{} (\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} Q[n;s]))
{}\mRightarrow{} (\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. Q[n + 1;s.m@n]) {}\mRightarrow{} Q[n;s]))
{}\mRightarrow{} (\mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}m:\mBbbN{}. B[m;alpha]))
{}\mRightarrow{} \00D9(Q[0;\mlambda{}x.\mbot{}]))
By
Latex:
(Auto
THEN RenameVar `bar' (-1)
THEN (InstLemma `strong-continuity-rel` [\mkleeneopen{}\mlambda{}f,n. (B n f)\mkleeneclose{};\mkleeneopen{}bar\mkleeneclose{}]\mcdot{} THENA Auto)
THEN MoveToConcl (-1)
THEN (BLemma `implies-quotient-true` THENA Auto)
THEN (D 0 THENA Auto)
THEN ExRepD)
Home
Index