Nuprl Lemma : monotone-bar-induction3-2

B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n])))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s]))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s]))
   (∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha]))
   ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_apply: x[s1;s2] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] ge: i ≥  decidable: Dec(P) or: P ∨ Q squash: T true: True ext2Baire: ext2Baire(n;f;d) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b cand: c∧ B outl: outl(x) isl: isl(x) less_than: a < b seq-add: s.x@n nequal: a ≠ b ∈  subtract: m iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  strong-continuity-rel subtype_rel_dep_function nat_wf int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self implies-quotient-true exists_wf unit_wf2 all_wf equal_wf subtype_rel_union assert_wf isl_wf le_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf quotient_wf true_wf equiv_rel_true nat_properties decidable__le intformnot_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_add_lemma seq-add_wf basic_bar_induction decidable__assert seq-adjoin_wf ext2Baire_wf squash_wf bool_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf decidable__equal_int lelt_wf bfalse_wf and_wf btrue_wf btrue_neq_bfalse intformeq_wf int_formula_prop_eq_lemma decidable__lt equal-wf-base-T int_subtype_base int_seg_subtype subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_wf primrec-wf2 add-zero add-member-int_seg2 add-associates subtract-add-cancel eq_int_wf assert_of_eq_int decidable__equal_nat neg_assert_of_eq_int minus-one-mul add-commutes add-mul-special zero-mul zero-add seq-adjoin-is-seq-add iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality applyEquality functionExtensionality hypothesisEquality because_Cache isectElimination hypothesis sqequalRule natural_numberEquality setElimination independent_isectElimination independent_pairFormation functionEquality unionEquality productEquality inlEquality dependent_set_memberEquality productElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination addEquality unionElimination universeEquality cumulativity imageElimination imageMemberEquality baseClosed addLevel hyp_replacement equalitySymmetry equalityTransitivity levelHypothesis equalityElimination promote_hyp instantiate applyLambdaEquality baseApply closedConclusion inrEquality int_eqReduceTrueSq int_eqReduceFalseSq

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha]))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2017_04_17-AM-10_03_45
Last ObjectModification: 2017_02_27-PM-05_55_58

Theory : continuity


Home Index