Nuprl Lemma : seq-adjoin-is-seq-add

[n:ℕ]. ∀[s:ℕn ⟶ ℕ]. ∀[m:ℕ].  (s.m@n s++m ∈ (ℕ1 ⟶ ℕ))


Proof




Definitions occuring in Statement :  seq-adjoin: s++t seq-add: s.x@n int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-adjoin: s++t seq-add: s.x@n seq-append: seq-append(n;m;s1;s2) int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: guard: {T} ge: i ≥  lelt: i ≤ j < k subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int lt_int_wf assert_of_lt_int top_wf less_than_wf int_seg_properties nat_properties decidable__equal_int int_seg_wf lelt_wf full-omega-unsat intformand_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot intformnot_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_term_value_add_lemma int_term_value_constant_lemma neg_assert_of_eq_int nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination int_eqReduceTrueSq lessCases axiomSqEquality isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination addEquality dependent_functionElimination applyEquality functionExtensionality dependent_set_memberEquality approximateComputation dependent_pairFormation int_eqEquality intEquality promote_hyp instantiate cumulativity int_eqReduceFalseSq axiomEquality functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[m:\mBbbN{}].    (s.m@n  =  s++m)



Date html generated: 2019_06_20-PM-02_54_48
Last ObjectModification: 2018_08_20-PM-09_34_23

Theory : continuity


Home Index