Step * 1 of Lemma monotone-bar-induction5


1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ(B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha]  B[m 1;alpha]))))
6. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
      ∀f:ℕ ⟶ ℕ
        ∃n:ℕ
         ∃k:ℕn
          (((B f) ∧ (∀m:{k...}. (B[m;f]  B[m 1;f])))
          ∧ ((M f) (inl k) ∈ (ℕ?))
          ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
⊢ ⇃(⇃(Q[0;λx.⊥]))
BY
Assert ⌜(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
            ∀f:ℕ ⟶ ℕ
              ∃n:ℕ
               ∃k:ℕn
                (((B f) ∧ (∀m:{k...}. (B[m;f]  B[m 1;f])))
                ∧ ((M f) (inl k) ∈ (ℕ?))
                ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
           ⇃(Q[0;λx.⊥])⌝⋅ }

1
.....assertion..... 
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ(B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha]  B[m 1;alpha]))))
6. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
      ∀f:ℕ ⟶ ℕ
        ∃n:ℕ
         ∃k:ℕn
          (((B f) ∧ (∀m:{k...}. (B[m;f]  B[m 1;f])))
          ∧ ((M f) (inl k) ∈ (ℕ?))
          ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
⊢ (∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
    ∀f:ℕ ⟶ ℕ
      ∃n:ℕ
       ∃k:ℕn
        (((B f) ∧ (∀m:{k...}. (B[m;f]  B[m 1;f])))
        ∧ ((M f) (inl k) ∈ (ℕ?))
        ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
 ⇃(Q[0;λx.⊥])

2
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ(B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha]  B[m 1;alpha]))))
6. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
      ∀f:ℕ ⟶ ℕ
        ∃n:ℕ
         ∃k:ℕn
          (((B f) ∧ (∀m:{k...}. (B[m;f]  B[m 1;f])))
          ∧ ((M f) (inl k) ∈ (ℕ?))
          ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
7. (∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ
       ∃n:ℕ
        ∃k:ℕn
         (((B f) ∧ (∀m:{k...}. (B[m;f]  B[m 1;f])))
         ∧ ((M f) (inl k) ∈ (ℕ?))
         ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
 ⇃(Q[0;λx.⊥])
⊢ ⇃(⇃(Q[0;λx.⊥]))


Latex:


Latex:

1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s]))
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
5.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (B[n;alpha]  \mwedge{}  (\mforall{}m:\{n...\}.  (B[m;alpha]  {}\mRightarrow{}  B[m  +  1;alpha]))))
6.  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
            \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                \mexists{}n:\mBbbN{}
                  \mexists{}k:\mBbbN{}n
                    (((B  k  f)  \mwedge{}  (\mforall{}m:\{k...\}.  (B[m;f]  {}\mRightarrow{}  B[m  +  1;f])))
                    \mwedge{}  ((M  n  f)  =  (inl  k))
                    \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k))))))
\mvdash{}  \00D9(\00D9(Q[0;\mlambda{}x.\mbot{}]))


By


Latex:
Assert  \mkleeneopen{}(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
                    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                        \mexists{}n:\mBbbN{}
                          \mexists{}k:\mBbbN{}n
                            (((B  k  f)  \mwedge{}  (\mforall{}m:\{k...\}.  (B[m;f]  {}\mRightarrow{}  B[m  +  1;f])))
                            \mwedge{}  ((M  n  f)  =  (inl  k))
                            \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k))))))
                {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}])\mkleeneclose{}\mcdot{}




Home Index