Step
*
1
1
1
of Lemma
monotone-bar-induction5
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha] 
⇒ B[m + 1;alpha]))))
6. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B k f) ∧ (∀m:{k...}. (B[m;f] 
⇒ B[m + 1;f])))
       ∧ ((M n f) = (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
⊢ ⇃(Q[0;λx.⊥])
BY
{ (InstLemma `basic_bar_induction` [⌜ℕ⌝;⌜λ2n f.↑isl(M n f)⌝;⌜λ2n s.⇃(Q[n;s])⌝]⋅ THEN Auto) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha] 
⇒ B[m + 1;alpha]))))
6. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B k f) ∧ (∀m:{k...}. (B[m;f] 
⇒ B[m + 1;f])))
       ∧ ((M n f) = (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
8. n : ℕ
9. s : ℕn ⟶ ℕ
10. ↑isl(M n s)
⊢ ⇃(Q[n;s])
2
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha] 
⇒ B[m + 1;alpha]))))
6. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B k f) ∧ (∀m:{k...}. (B[m;f] 
⇒ B[m + 1;f])))
       ∧ ((M n f) = (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
8. n : ℕ
9. s : ℕn ⟶ ℕ
10. ∀t:ℕ. ⇃(Q[n + 1;s++t])
⊢ ⇃(Q[n;s])
3
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha] 
⇒ B[m + 1;alpha]))))
6. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B k f) ∧ (∀m:{k...}. (B[m;f] 
⇒ B[m + 1;f])))
       ∧ ((M n f) = (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
8. alpha : ℕ ⟶ ℕ
⊢ ↓∃m:ℕ. (↑isl(M m alpha))
Latex:
Latex:
1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s]))
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
5.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (B[n;alpha]  \mwedge{}  (\mforall{}m:\{n...\}.  (B[m;alpha]  {}\mRightarrow{}  B[m  +  1;alpha]))))
6.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
7.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}
            \mexists{}k:\mBbbN{}n
              (((B  k  f)  \mwedge{}  (\mforall{}m:\{k...\}.  (B[m;f]  {}\mRightarrow{}  B[m  +  1;f])))
              \mwedge{}  ((M  n  f)  =  (inl  k))
              \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k)))))
\mvdash{}  \00D9(Q[0;\mlambda{}x.\mbot{}])
By
Latex:
(InstLemma  `basic\_bar\_induction`  [\mkleeneopen{}\mBbbN{}\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n  f.\muparrow{}isl(M  n  f)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n  s.\00D9(Q[n;s])\mkleeneclose{}]\mcdot{}  THEN  Auto)
Home
Index