Step
*
1
1
1
1
of Lemma
monotone-bar-induction7
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
4. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha] ∧ ⇃(Q[m;alpha])))))
5. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
6. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B k f) ∧ (∀m:{k...}. (B[m;f] ∧ ⇃(Q[m;f]))))
       ∧ ((M n f) = (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
7. n : ℕ
8. s : ℕn ⟶ ℕ
9. ↑isl(M n s)
⊢ ⇃(Q[n;s])
BY
{ ((InstHyp [⌜ext2Baire(n;s;0)⌝] (-4)⋅ THENA Auto) THEN ExRepD THEN RenameVar `i' (-6)) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n + 1;s.m@n])) 
⇒ ⇃(Q[n;s]))
4. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha] ∧ ⇃(Q[m;alpha])))))
5. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
6. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B k f) ∧ (∀m:{k...}. (B[m;f] ∧ ⇃(Q[m;f]))))
       ∧ ((M n f) = (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
7. n : ℕ
8. s : ℕn ⟶ ℕ
9. ↑isl(M n s)
10. i : ℕ
11. k : ℕi
12. B k ext2Baire(n;s;0)
13. ∀m:{k...}. (B[m;ext2Baire(n;s;0)] ∧ ⇃(Q[m;ext2Baire(n;s;0)]))
14. (M i ext2Baire(n;s;0)) = (inl k) ∈ (ℕ?)
15. ∀m:ℕ. ((↑isl(M m ext2Baire(n;s;0))) 
⇒ ((M m ext2Baire(n;s;0)) = (inl k) ∈ (ℕ?)))
⊢ ⇃(Q[n;s])
Latex:
Latex:
1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
4.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (B[n;alpha]  \mwedge{}  (\mforall{}m:\{n...\}.  (B[m;alpha]  \mwedge{}  \00D9(Q[m;alpha])))))
5.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
6.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}
            \mexists{}k:\mBbbN{}n
              (((B  k  f)  \mwedge{}  (\mforall{}m:\{k...\}.  (B[m;f]  \mwedge{}  \00D9(Q[m;f]))))
              \mwedge{}  ((M  n  f)  =  (inl  k))
              \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k)))))
7.  n  :  \mBbbN{}
8.  s  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}
9.  \muparrow{}isl(M  n  s)
\mvdash{}  \00D9(Q[n;s])
By
Latex:
((InstHyp  [\mkleeneopen{}ext2Baire(n;s;0)\mkleeneclose{}]  (-4)\mcdot{}  THENA  Auto)  THEN  ExRepD  THEN  RenameVar  `i'  (-6))
Home
Index