Nuprl Lemma : monotone-bar-induction7
∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
((∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s])))
⇒ (∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha] ∧ ⇃(Q[m;alpha]))))))
⇒ ⇃(Q[0;λx.⊥]))
Proof
Definitions occuring in Statement :
quotient: x,y:A//B[x; y]
,
seq-add: s.x@n
,
int_upper: {i...}
,
int_seg: {i..j-}
,
nat: ℕ
,
bottom: ⊥
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
true: True
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
uimplies: b supposing a
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
so_lambda: λ2x.t[x]
,
so_apply: x[s1;s2]
,
sq_stable: SqStable(P)
,
squash: ↓T
,
int_upper: {i...}
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
ge: i ≥ j
,
guard: {T}
,
isl: isl(x)
,
ext2Baire: ext2Baire(n;f;d)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
true: True
,
outl: outl(x)
,
seq-adjoin: s++t
,
seq-add: s.x@n
,
seq-append: seq-append(n;m;s1;s2)
,
less_than: a < b
,
nequal: a ≠ b ∈ T
,
cand: A c∧ B
,
quotient: x,y:A//B[x; y]
Lemmas referenced :
strong-continuity-rel,
subtype_rel_function,
nat_wf,
int_seg_wf,
int_seg_subtype_nat,
istype-false,
subtype_rel_self,
all_wf,
int_upper_wf,
upper_subtype_nat,
sq_stable__le,
quotient_wf,
true_wf,
equiv_rel_true,
istype-int_upper,
prop-truncation-quot,
decidable__le,
full-omega-unsat,
intformnot_wf,
intformle_wf,
itermConstant_wf,
istype-int,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
istype-le,
int_seg_properties,
intformand_wf,
intformless_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
istype-nat,
exists_wf,
nat_properties,
itermAdd_wf,
int_term_value_add_lemma,
seq-add_wf,
unit_wf2,
union_subtype_base,
set_subtype_base,
lelt_wf,
int_subtype_base,
unit_subtype_base,
istype-assert,
btrue_wf,
bfalse_wf,
subtype_rel_union,
basic_bar_induction,
assert_wf,
decidable__assert,
seq-adjoin_wf,
ext2Baire_wf,
squash_wf,
bool_wf,
isl_wf,
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
less_than_wf,
istype-less_than,
le_wf,
btrue_neq_bfalse,
decidable__lt,
intformeq_wf,
int_formula_prop_eq_lemma,
equiv_rel_wf,
istype-universe,
decidable__equal_int,
eq_int_wf,
assert_of_eq_int,
istype-top,
neg_assert_of_eq_int,
quotient-member-eq,
member_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :lambdaFormation_alt,
rename,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
Error :lambdaEquality_alt,
productEquality,
applyEquality,
hypothesisEquality,
isectElimination,
hypothesis,
because_Cache,
natural_numberEquality,
setElimination,
independent_isectElimination,
sqequalRule,
independent_pairFormation,
independent_functionElimination,
imageMemberEquality,
baseClosed,
imageElimination,
Error :inhabitedIsType,
Error :universeIsType,
Error :dependent_set_memberEquality_alt,
unionElimination,
approximateComputation,
Error :dependent_pairFormation_alt,
Error :isect_memberEquality_alt,
voidElimination,
productElimination,
int_eqEquality,
Error :functionIsType,
Error :productIsType,
addEquality,
universeEquality,
Error :unionIsType,
instantiate,
Error :equalityIstype,
intEquality,
baseApply,
closedConclusion,
sqequalBase,
equalitySymmetry,
equalityTransitivity,
hyp_replacement,
Error :functionExtensionality_alt,
equalityElimination,
promote_hyp,
cumulativity,
applyLambdaEquality,
functionExtensionality,
int_eqReduceTrueSq,
lessCases,
Error :isect_memberFormation_alt,
axiomSqEquality,
Error :isectIsTypeImplies,
int_eqReduceFalseSq,
pointwiseFunctionality,
pertypeElimination
Latex:
\mforall{}B,Q:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}.
((\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. \00D9(Q[n + 1;s.m@n])) {}\mRightarrow{} \00D9(Q[n;s])))
{}\mRightarrow{} (\mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}n:\mBbbN{}. (B[n;alpha] \mwedge{} (\mforall{}m:\{n...\}. (B[m;alpha] \mwedge{} \00D9(Q[m;alpha]))))))
{}\mRightarrow{} \00D9(Q[0;\mlambda{}x.\mbot{}]))
Date html generated:
2019_06_20-PM-02_56_41
Last ObjectModification:
2018_12_06-PM-11_35_14
Theory : continuity
Home
Index