Step
*
of Lemma
monotone-bar-induction8-2
∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s])) 
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. Q[m;f])) 
⇒ ⇃(Q[0;λx.⊥]))
BY
{ ((UnivCD THENA Auto)
   THEN RenameVar `bar' (-1)
   THEN (InstLemma `strong-continuity-rel` [⌜λf,n. ∀m:{n...}. Q[m;f]⌝;⌜bar⌝]⋅ THENA Auto)
   THEN MoveToConcl (-1)
   THEN (BLemma `implies-quotient-true` THENA Auto)
   THEN (D 0 THENA Auto)
   THEN ExRepD) }
1
1. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s])
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. Q[m;f])
4. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
5. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((λf,n. ∀m:{n...}. Q[m;f]) f k)
       ∧ ((M n f) = (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
⊢ Q[0;λx.⊥]
Latex:
Latex:
\mforall{}Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]))
    {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}m:\{n...\}.  Q[m;f]))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))
By
Latex:
((UnivCD  THENA  Auto)
  THEN  RenameVar  `bar'  (-1)
  THEN  (InstLemma  `strong-continuity-rel`  [\mkleeneopen{}\mlambda{}f,n.  \mforall{}m:\{n...\}.  Q[m;f]\mkleeneclose{};\mkleeneopen{}bar\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  MoveToConcl  (-1)
  THEN  (BLemma  `implies-quotient-true`  THENA  Auto)
  THEN  (D  0  THENA  Auto)
  THEN  ExRepD)
Home
Index