Step
*
of Lemma
not-LPO
¬(∀f:ℕ ⟶ ℕ. ((∀n:ℕ. ((f n) = 0 ∈ ℤ)) ∨ (¬(∀n:ℕ. ((f n) = 0 ∈ ℤ)))))
BY
{ ((D 0 THENA Auto)
THEN (Assert ∀f:ℕ ⟶ ℕ. ∃k:ℕ. (0 < k
⇐⇒ ∀n:ℕ. ((f n) = 0 ∈ ℤ)) BY
(ParallelLast THEN (D -1 THENL [D 0 With ⌜1⌝ ; D 0 With ⌜0⌝ ]) THEN Auto))
THEN (Skolemize (-1) `F' THENA Auto)) }
1
1. ∀f:ℕ ⟶ ℕ. ((∀n:ℕ. ((f n) = 0 ∈ ℤ)) ∨ (¬(∀n:ℕ. ((f n) = 0 ∈ ℤ))))
2. ∀f:ℕ ⟶ ℕ. ∃k:ℕ. (0 < k
⇐⇒ ∀n:ℕ. ((f n) = 0 ∈ ℤ))
3. F : f:(ℕ ⟶ ℕ) ⟶ ℕ
4. ∀f:ℕ ⟶ ℕ. (0 < F f
⇐⇒ ∀n:ℕ. ((f n) = 0 ∈ ℤ))
⊢ False
Latex:
Latex:
\mneg{}(\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. ((\mforall{}n:\mBbbN{}. ((f n) = 0)) \mvee{} (\mneg{}(\mforall{}n:\mBbbN{}. ((f n) = 0)))))
By
Latex:
((D 0 THENA Auto)
THEN (Assert \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mexists{}k:\mBbbN{}. (0 < k \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}. ((f n) = 0)) BY
(ParallelLast THEN (D -1 THENL [D 0 With \mkleeneopen{}1\mkleeneclose{} ; D 0 With \mkleeneopen{}0\mkleeneclose{} ]) THEN Auto))
THEN (Skolemize (-1) `F' THENA Auto))
Home
Index