Nuprl Lemma : not-LPO

¬(∀f:ℕ ⟶ ℕ((∀n:ℕ((f n) 0 ∈ ℤ)) ∨ (∀n:ℕ((f n) 0 ∈ ℤ)))))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] not: ¬A or: P ∨ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q all: x:A. B[x] member: t ∈ T or: P ∨ Q exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False prop: uall: [x:A]. B[x] iff: ⇐⇒ Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} rev_implies:  Q less_than: a < b so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  false_wf le_wf equal_wf squash_wf true_wf iff_weakening_equal nat_wf less_than_wf all_wf equal-wf-T-base iff_wf or_wf not_wf exists_wf weak-continuity-nat-nat squash-from-quotient equal-wf-base-T subtype_rel_dep_function int_seg_wf int_seg_subtype_nat subtype_rel_self lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_seg_properties nat_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_subtype_base decidable__lt bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality unionElimination dependent_pairFormation dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction extract_by_obid isectElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache functionExtensionality setElimination rename voidElimination functionEquality promote_hyp equalityElimination instantiate cumulativity approximateComputation isect_memberEquality voidEquality int_eqEquality applyLambdaEquality impliesFunctionality

Latex:
\mneg{}(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((\mforall{}n:\mBbbN{}.  ((f  n)  =  0))  \mvee{}  (\mneg{}(\mforall{}n:\mBbbN{}.  ((f  n)  =  0)))))



Date html generated: 2018_05_21-PM-01_17_55
Last ObjectModification: 2017_10_14-PM-09_14_13

Theory : continuity


Home Index