Nuprl Lemma : squash-from-quotient
∀[Q:ℙ]. (⇃(Q) 
⇒ (↓Q))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
true: True
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
quotient_wf, 
true_wf, 
equiv_rel_true, 
quotient-implies-squash
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
hypothesis, 
imageMemberEquality, 
baseClosed, 
extract_by_obid, 
isectElimination, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
universeEquality, 
lambdaFormation, 
independent_functionElimination
Latex:
\mforall{}[Q:\mBbbP{}].  (\00D9(Q)  {}\mRightarrow{}  (\mdownarrow{}Q))
Date html generated:
2016_12_12-AM-09_14_52
Last ObjectModification:
2016_11_22-PM-01_50_34
Theory : quot_1
Home
Index