Nuprl Lemma : squash-from-quotient

[Q:ℙ]. (⇃(Q)  (↓Q))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] uall: [x:A]. B[x] prop: squash: T implies:  Q true: True
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q squash: T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a guard: {T}
Lemmas referenced :  quotient_wf true_wf equiv_rel_true quotient-implies-squash
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality imageElimination hypothesis imageMemberEquality baseClosed extract_by_obid isectElimination cumulativity because_Cache independent_isectElimination universeEquality lambdaFormation independent_functionElimination

Latex:
\mforall{}[Q:\mBbbP{}].  (\00D9(Q)  {}\mRightarrow{}  (\mdownarrow{}Q))



Date html generated: 2016_12_12-AM-09_14_52
Last ObjectModification: 2016_11_22-PM-01_50_34

Theory : quot_1


Home Index