Step
*
of Lemma
not-choice-baire-to-nat
¬ChoicePrinciple((ℕ ⟶ ℕ) ⟶ ℕ)
BY
{ ((D 0 THENA Auto)
THEN Unfold `choice-principle` (-1)
THEN (InstHyp [⌜λ2F.∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ. ((f = g ∈ (ℕM f ⟶ ℕ))
⇒ ((F f) = (F g) ∈ ℕ))⌝] (-1)⋅
THENA Auto
)) }
1
1. ∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ ℙ. (∀t:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(P[t])
⇐⇒ ⇃(∀t:(ℕ ⟶ ℕ) ⟶ ℕ. P[t]))
2. ∀t:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ. ((f = g ∈ (ℕM f ⟶ ℕ))
⇒ ((t f) = (t g) ∈ ℕ)))
⇐⇒ ⇃(∀t:(ℕ ⟶ ℕ) ⟶ ℕ. ∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ. ((f = g ∈ (ℕM f ⟶ ℕ))
⇒ ((t f) = (t g) ∈ ℕ)))
⊢ False
Latex:
Latex:
\mneg{}ChoicePrinciple((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{})
By
Latex:
((D 0 THENA Auto)
THEN Unfold `choice-principle` (-1)
THEN (InstHyp [\mkleeneopen{}\mlambda{}\msubtwo{}F.\mexists{}M:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbN{}. ((f = g) {}\mRightarrow{} ((F f) = (F g)))\mkleeneclose{}] (-1)\mcdot{}
THENA Auto
))
Home
Index