Nuprl Lemma : not-choice-baire-to-nat

¬ChoicePrinciple((ℕ ⟶ ℕ) ⟶ ℕ)


Proof




Definitions occuring in Statement :  choice-principle: ChoicePrinciple(T) nat: not: ¬A function: x:A ⟶ B[x]
Definitions unfolded in proof :  not: ¬A implies:  Q choice-principle: ChoicePrinciple(T) all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False iff: ⇐⇒ Q guard: {T} unsquashed-WCP: unsquashed-WCP exists: x:A. B[x] rev_implies:  Q decidable: Dec(P) or: P ∨ Q nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  exists_wf nat_wf all_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self choice-principle_wf strong-continuity2-implies-weak-skolem implies-quotient-true unsquashed-weak-continuity-false decidable__le nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf le_wf prop-truncation-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin sqequalRule lambdaEquality introduction extract_by_obid isectElimination functionEquality because_Cache natural_numberEquality applyEquality functionExtensionality hypothesisEquality independent_isectElimination independent_pairFormation productElimination independent_functionElimination dependent_pairFormation unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality

Latex:
\mneg{}ChoicePrinciple((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_04_17-AM-10_02_06
Last ObjectModification: 2017_02_27-PM-05_53_41

Theory : continuity


Home Index