Nuprl Lemma : strong-continuity2-implies-weak-skolem

F:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ.  ((f g ∈ (ℕf ⟶ ℕ))  ((F f) (F g) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T strong-continuity2: strong-continuity2(T;F) weak-continuity-skolem: weak-continuity-skolem(T;F) uall: [x:A]. B[x] implies:  Q prop: guard: {T}
Lemmas referenced :  strong-continuity2-no-inner-squash implies-quotient-true strong-continuity2_wf nat_wf weak-continuity-skolem_wf strong-continuity2-weak-skolem
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination functionExtensionality applyEquality functionEquality independent_functionElimination because_Cache

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2016_12_12-AM-09_23_24
Last ObjectModification: 2016_11_22-PM-00_07_27

Theory : continuity


Home Index