Nuprl Lemma : strong-continuity2-implies-weak-skolem
∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ.  ((f = g ∈ (ℕM f ⟶ ℕ)) 
⇒ ((F f) = (F g) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
strong-continuity2: strong-continuity2(T;F)
, 
weak-continuity-skolem: weak-continuity-skolem(T;F)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
strong-continuity2-no-inner-squash, 
implies-quotient-true, 
strong-continuity2_wf, 
nat_wf, 
weak-continuity-skolem_wf, 
strong-continuity2-weak-skolem
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
functionExtensionality, 
applyEquality, 
functionEquality, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
Date html generated:
2016_12_12-AM-09_23_24
Last ObjectModification:
2016_11_22-PM-00_07_27
Theory : continuity
Home
Index