Nuprl Lemma : weak-continuity-skolem_wf

[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (weak-continuity-skolem(T;F) ∈ ℙ)


Proof




Definitions occuring in Statement :  weak-continuity-skolem: weak-continuity-skolem(T;F) nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T weak-continuity-skolem: weak-continuity-skolem(T;F) so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x]
Lemmas referenced :  exists_wf nat_wf all_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality because_Cache lambdaEquality natural_numberEquality applyEquality functionExtensionality independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (weak-continuity-skolem(T;F)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-09_53_57
Last ObjectModification: 2017_02_27-PM-05_48_42

Theory : continuity


Home Index