Nuprl Lemma : strong-continuity2-no-inner-squash
∀F:(ℕ ⟶ ℕ) ⟶ ℕ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
     ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
isl: isl(x), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
true: True, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
inl: inl x, 
union: left + right, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
squash: ↓T, 
cand: A c∧ B, 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
strong-continuity2: strong-continuity2(T;F)
Lemmas referenced : 
subtype_rel_self, 
nat_wf, 
strong-continuity2-half-squash
Rules used in proof : 
functionEquality, 
dependent_functionElimination, 
baseClosed, 
hypothesisEquality, 
imageMemberEquality, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
Date html generated:
2017_09_29-PM-06_05_37
Last ObjectModification:
2017_09_03-PM-09_28_20
Theory : continuity
Home
Index