Nuprl Lemma : strong-continuity2-no-inner-squash

F:(ℕ ⟶ ℕ) ⟶ ℕ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
     ∀f:ℕ ⟶ ℕ((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  squash: T cand: c∧ B and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] strong-continuity2: strong-continuity2(T;F)
Lemmas referenced :  subtype_rel_self nat_wf strong-continuity2-half-squash
Rules used in proof :  functionEquality dependent_functionElimination baseClosed hypothesisEquality imageMemberEquality independent_functionElimination independent_pairFormation because_Cache independent_isectElimination hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))



Date html generated: 2017_09_29-PM-06_05_37
Last ObjectModification: 2017_09_03-PM-09_28_20

Theory : continuity


Home Index