Step
*
of Lemma
strong-continuity2-no-inner-squash
∀F:(ℕ ⟶ ℕ) ⟶ ℕ
⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
BY
{ ((Fold `strong-continuity2` 0 THEN Auto) THEN BLemma `strong-continuity2-half-squash` THEN Auto) }
Latex:
Latex:
\mforall{}F:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
\00D9(\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f))))
By
Latex:
((Fold `strong-continuity2` 0 THEN Auto) THEN BLemma `strong-continuity2-half-squash` THEN Auto)
Home
Index