Nuprl Lemma : choice-principle_wf
∀[T:Type]. (ChoicePrinciple(T) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
choice-principle: ChoicePrinciple(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
choice-principle: ChoicePrinciple(T), 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
and: P ∧ Q
Lemmas referenced : 
equiv_rel_true, 
true_wf, 
quotient_wf, 
iff_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  (ChoicePrinciple(T)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_14-PM-09_42_14
Last ObjectModification:
2016_01_11-PM-02_11_15
Theory : continuity
Home
Index