Step
*
1
1
1
of Lemma
old-Kripke2a
1. ∀P:(ℕ ⟶ ℕ) ⟶ ℙ. ∀f:ℕ ⟶ ℕ.  ((P f) 
⇒ ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ. ((f = g ∈ (ℕk ⟶ ℕ)) 
⇒ (P g))))
2. a : ℕ ⟶ ℕ
3. increasing-sequence(a)
4. m : ℕ
5. ¬(∃n:ℕ. ((a n) ≥ m ))
6. k : ℕ
7. ∀g:ℕ ⟶ ℕ. ((a = g ∈ (ℕk ⟶ ℕ)) 
⇒ (¬(∃n:ℕ. ((g n) ≥ m ))))
⊢ False
BY
{ (Assert ⌜a k < m⌝⋅ THENA (SupposeNot THEN D (-4) THEN InstConcl [⌜k⌝]⋅ THEN Auto)) }
1
1. ∀P:(ℕ ⟶ ℕ) ⟶ ℙ. ∀f:ℕ ⟶ ℕ.  ((P f) 
⇒ ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ. ((f = g ∈ (ℕk ⟶ ℕ)) 
⇒ (P g))))
2. a : ℕ ⟶ ℕ
3. increasing-sequence(a)
4. m : ℕ
5. ¬(∃n:ℕ. ((a n) ≥ m ))
6. k : ℕ
7. ∀g:ℕ ⟶ ℕ. ((a = g ∈ (ℕk ⟶ ℕ)) 
⇒ (¬(∃n:ℕ. ((g n) ≥ m ))))
8. a k < m
⊢ False
Latex:
Latex:
1.  \mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((P  f)  {}\mRightarrow{}  \00D9(\mexists{}k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g))))
2.  a  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
3.  increasing-sequence(a)
4.  m  :  \mBbbN{}
5.  \mneg{}(\mexists{}n:\mBbbN{}.  ((a  n)  \mgeq{}  m  ))
6.  k  :  \mBbbN{}
7.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((a  =  g)  {}\mRightarrow{}  (\mneg{}(\mexists{}n:\mBbbN{}.  ((g  n)  \mgeq{}  m  ))))
\mvdash{}  False
By
Latex:
(Assert  \mkleeneopen{}a  k  <  m\mkleeneclose{}\mcdot{}  THENA  (SupposeNot  THEN  D  (-4)  THEN  InstConcl  [\mkleeneopen{}k\mkleeneclose{}]\mcdot{}  THEN  Auto))
Home
Index