Step
*
of Lemma
strong-continuity-implies1
∀[F:(ℕ ⟶ ℕ) ⟶ ℕ]
(↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
∀f:ℕ ⟶ ℕ. ((↓∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
BY
{ xxx((UnivCD THENA Auto)
THEN (InstLemma `strong-continuity2-no-inner-squash` [⌜F⌝]⋅ THENA Auto)
THEN (BLemma `squash-from-quotient` THENA Auto)
THEN RepeatFor 4 ((ParallelLast THENA Auto)))xxx }
Latex:
Latex:
\mforall{}[F:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}]
(\mdownarrow{}\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
((\mdownarrow{}\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f))))
By
Latex:
xxx((UnivCD THENA Auto)
THEN (InstLemma `strong-continuity2-no-inner-squash` [\mkleeneopen{}F\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (BLemma `squash-from-quotient` THENA Auto)
THEN RepeatFor 4 ((ParallelLast THENA Auto)))xxx
Home
Index