Nuprl Lemma : strong-continuity-implies1

[F:(ℕ ⟶ ℕ) ⟶ ℕ]
  (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
     ∀f:ℕ ⟶ ℕ((↓∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  cand: c∧ B squash: T exists: x:A. B[x] implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] guard: {T}
Lemmas referenced :  isl_wf assert_wf isect_wf subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function equal_wf squash_wf all_wf unit_wf2 int_seg_wf nat_wf exists_wf squash-from-quotient strong-continuity2-no-inner-squash implies-quotient-true
Rules used in proof :  promote_hyp dependent_pairFormation productElimination baseClosed imageMemberEquality imageElimination independent_functionElimination inlEquality lambdaFormation independent_pairFormation independent_isectElimination functionExtensionality applyEquality productEquality lambdaEquality sqequalRule unionEquality because_Cache rename setElimination natural_numberEquality hypothesis functionEquality isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}]
    (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              ((\mdownarrow{}\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))



Date html generated: 2018_05_21-PM-01_17_47
Last ObjectModification: 2018_05_18-PM-04_03_51

Theory : continuity


Home Index