Nuprl Lemma : strong-continuity-implies1
∀[F:(ℕ ⟶ ℕ) ⟶ ℕ]
  (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
     ∀f:ℕ ⟶ ℕ. ((↓∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cand: A c∧ B
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
Lemmas referenced : 
isl_wf, 
assert_wf, 
isect_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
equal_wf, 
squash_wf, 
all_wf, 
unit_wf2, 
int_seg_wf, 
nat_wf, 
exists_wf, 
squash-from-quotient, 
strong-continuity2-no-inner-squash, 
implies-quotient-true
Rules used in proof : 
promote_hyp, 
dependent_pairFormation, 
productElimination, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
independent_functionElimination, 
inlEquality, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
unionEquality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
hypothesis, 
functionEquality, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}]
    (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              ((\mdownarrow{}\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
Date html generated:
2018_05_21-PM-01_17_47
Last ObjectModification:
2018_05_18-PM-04_03_51
Theory : continuity
Home
Index