Step * 1 2 of Lemma strong-continuity-rel


1. (ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ
2. ⇃(∃F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f:ℕ ⟶ ℕ(P (F f)))
3. (∃F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f:ℕ ⟶ ℕ(P (F f)))
 ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
      ∀f:ℕ ⟶ ℕ
        ∃n:ℕ. ∃k:ℕn. ((P k) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
⊢ ⇃(⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
       ∀f:ℕ ⟶ ℕ
         ∃n:ℕ. ∃k:ℕn. ((P k) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?)))))))
BY
(RenameVar `f' (-1)
   THEN RenameVar `M' (-2)
   THEN UseWitness ⌜M⌝⋅
   THEN newQuotientElim1 (-2)
   THEN Try (CompleteAuto)) }


Latex:


Latex:

1.  P  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}
2.  \00D9(\mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (P  f  (F  f)))
3.  (\mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (P  f  (F  f)))
{}\mRightarrow{}  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
            \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                \mexists{}n:\mBbbN{}
                  \mexists{}k:\mBbbN{}n.  ((P  f  k)  \mwedge{}  ((M  n  f)  =  (inl  k))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k))))))
\mvdash{}  \00D9(\00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
              \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                  \mexists{}n:\mBbbN{}
                    \mexists{}k:\mBbbN{}n.  ((P  f  k)  \mwedge{}  ((M  n  f)  =  (inl  k))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k)))))))


By


Latex:
(RenameVar  `f'  (-1)
  THEN  RenameVar  `M'  (-2)
  THEN  UseWitness  \mkleeneopen{}f  M\mkleeneclose{}\mcdot{}
  THEN  newQuotientElim1  (-2)
  THEN  Try  (CompleteAuto))




Home Index