Step
*
of Lemma
strong-continuity2-no-inner-squash-cantor4
∀F:(ℕ ⟶ 𝔹) ⟶ 𝔹
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?)
     ∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (𝔹?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (𝔹?) supposing ↑isl(M n f))))
BY
{ xxx((UnivCD THENA Auto)
      THEN InstLemma `strong-continuity2-half-squash-surject-biject`
       [⌜𝔹⌝;⌜𝔹⌝;⌜ℕ2⌝;⌜F⌝]⋅
      THEN Auto)xxx }
Latex:
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbB{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
By
Latex:
xxx((UnivCD  THENA  Auto)
        THEN  InstLemma  `strong-continuity2-half-squash-surject-biject`
          [\mkleeneopen{}\mBbbB{}\mkleeneclose{};\mkleeneopen{}\mBbbB{}\mkleeneclose{};\mkleeneopen{}\mBbbN{}2\mkleeneclose{};\mkleeneopen{}F\mkleeneclose{}]\mcdot{}
        THEN  Auto)xxx
Home
Index