Nuprl Lemma : strong-continuity2-no-inner-squash-cantor4
∀F:(ℕ ⟶ 𝔹) ⟶ 𝔹
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?)
     ∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (𝔹?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (𝔹?) supposing ↑isl(M n f))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
isl: isl(x)
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
true: True
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
biject-bool-nsub2, 
surject-nat-bool, 
less_than_wf, 
retraction-nat-nsub, 
false_wf, 
int_seg_subtype_nat, 
int_seg_wf, 
bool_wf, 
nat_wf, 
strong-continuity2-half-squash-surject-biject
Rules used in proof : 
baseClosed, 
hypothesisEquality, 
imageMemberEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
independent_pairFormation, 
sqequalRule, 
independent_isectElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
functionEquality, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbB{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
Date html generated:
2018_05_21-PM-01_19_05
Last ObjectModification:
2018_05_18-PM-04_17_46
Theory : continuity
Home
Index