Nuprl Lemma : biject-bool-nsub2

f:𝔹 ⟶ ℕ2. Bij(𝔹;ℕ2;f)


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) int_seg: {i..j-} bool: 𝔹 exists: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  exists: x:A. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) decidable: Dec(P) subtype_rel: A ⊆B
Lemmas referenced :  eqtt_to_assert false_wf lelt_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot int_seg_wf biject_wf btrue_wf le_antisymmetry_iff bfalse_wf decidable__int_equal int_subtype_base int_seg_properties int_seg_subtype_special int_seg_cases less_than_transitivity1 less_than_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  cut hypothesisEquality hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  thin sqequalHypSubstitution unionElimination equalityElimination sqequalRule introduction extract_by_obid isectElimination productElimination independent_isectElimination Error :dependent_set_memberEquality_alt,  natural_numberEquality independent_pairFormation Error :universeIsType,  imageMemberEquality baseClosed equalityTransitivity equalitySymmetry Error :equalityIsType1,  promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination Error :equalityIsType4,  applyLambdaEquality setElimination rename intEquality baseApply closedConclusion applyEquality hypothesis_subsumption

Latex:
\mexists{}f:\mBbbB{}  {}\mrightarrow{}  \mBbbN{}2.  Bij(\mBbbB{};\mBbbN{}2;f)



Date html generated: 2019_06_20-PM-00_26_43
Last ObjectModification: 2018_09_29-PM-11_14_09

Theory : fun_1


Home Index