Nuprl Lemma : retraction-nat-nsub

k:ℕ+. ∃r:ℕ ⟶ ℕk. ∀x:ℕk. ((r x) x ∈ ℕk)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] less_than': less_than'(a;b) le: A ≤ B rev_implies:  Q not: ¬A iff: ⇐⇒ Q false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff prop: lelt: i ≤ j < k int_seg: {i..j-} uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] all: x:A. B[x]
Lemmas referenced :  nat_plus_wf int_seg_subtype_nat all_wf int_seg_wf nat_wf false_wf assert_of_bnot iff_weakening_uiff not_wf bnot_wf assert_wf iff_transitivity bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert less_than_wf le_wf and_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf
Rules used in proof :  functionExtensionality applyEquality impliesFunctionality voidElimination independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp equalitySymmetry equalityTransitivity natural_numberEquality independent_pairFormation hypothesisEquality dependent_set_memberEquality independent_isectElimination productElimination sqequalRule equalityElimination unionElimination hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaEquality dependent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mexists{}r:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}k.  \mforall{}x:\mBbbN{}k.  ((r  x)  =  x)



Date html generated: 2017_09_29-PM-05_47_03
Last ObjectModification: 2017_09_04-PM-00_14_44

Theory : arithmetic


Home Index