Step * of Lemma strong-continuity2-no-inner-squash-cantor5

F:(ℕ ⟶ 𝔹) ⟶ ℤ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℤ?)
     ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (ℤ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℤ?) supposing ↑isl(M f))))
BY
((UnivCD THENA Auto) THEN InstLemma `strong-continuity2-half-squash-surject-biject`  [⌜𝔹⌝;⌜ℤ⌝;⌜ℕ⌝;⌜F⌝]⋅ THEN Auto) }

1
.....antecedent..... 
1. (ℕ ⟶ 𝔹) ⟶ ℤ
⊢ ∃r:ℕ ⟶ ℕ. ∀x:ℕ((r x) x ∈ ℕ)


Latex:


Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbZ{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))


By


Latex:
((UnivCD  THENA  Auto)
  THEN  InstLemma  `strong-continuity2-half-squash-surject-biject`
    [\mkleeneopen{}\mBbbB{}\mkleeneclose{};\mkleeneopen{}\mBbbZ{}\mkleeneclose{};\mkleeneopen{}\mBbbN{}\mkleeneclose{};\mkleeneopen{}F\mkleeneclose{}]\mcdot{}
  THEN  Auto)




Home Index