Nuprl Lemma : strong-continuity2-no-inner-squash-cantor5
∀F:(ℕ ⟶ 𝔹) ⟶ ℤ
⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℤ?)
∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℤ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℤ?) supposing ↑isl(M n f))))
Proof
Definitions occuring in Statement :
quotient: x,y:A//B[x; y]
,
int_seg: {i..j-}
,
nat: ℕ
,
assert: ↑b
,
isl: isl(x)
,
bool: 𝔹
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
true: True
,
unit: Unit
,
apply: f a
,
function: x:A ⟶ B[x]
,
inl: inl x
,
union: left + right
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
Lemmas referenced :
equal_wf,
all_wf,
biject-int-nat,
surject-nat-bool,
subtype_rel_self,
nat_wf,
bool_wf,
strong-continuity2-half-squash-surject-biject
Rules used in proof :
functionExtensionality,
applyEquality,
sqequalRule,
lambdaEquality,
dependent_pairFormation,
functionEquality,
hypothesisEquality,
dependent_functionElimination,
because_Cache,
independent_functionElimination,
intEquality,
hypothesis,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
lambdaFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}F:(\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbZ{}
\00D9(\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} (\mBbbZ{}?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f))))
Date html generated:
2017_09_29-PM-06_06_59
Last ObjectModification:
2017_09_04-AM-11_21_22
Theory : continuity
Home
Index