Step
*
1
of Lemma
strong-continuity2-weak-skolem
1. [T] : Type
2. [F] : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. ∀f:ℕ ⟶ T. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
⊢ ∃M:(ℕ ⟶ T) ⟶ ℕ. ∀f,g:ℕ ⟶ T.  ((f = g ∈ (ℕM f ⟶ T)) 
⇒ ((F f) = (F g) ∈ ℕ))
BY
{ (RenameVar `G' (-1)
   THEN (InstConcl [⌜λf.(fst(fst((G f))))⌝]⋅ THENA Auto)
   THEN Reduce 0⋅
   THEN RepeatFor 2 ((D 0 THENA Auto))) }
1
1. [T] : Type
2. [F] : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. G : ∀f:ℕ ⟶ T. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
5. f : ℕ ⟶ T
6. g : ℕ ⟶ T
⊢ (f = g ∈ (ℕfst(fst((G f))) ⟶ T)) 
⇒ ((F f) = (F g) ∈ ℕ)
Latex:
Latex:
1.  [T]  :  Type
2.  [F]  :  (\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}
3.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)
4.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
          ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))
\mvdash{}  \mexists{}M:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  T.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))
By
Latex:
(RenameVar  `G'  (-1)
  THEN  (InstConcl  [\mkleeneopen{}\mlambda{}f.(fst(fst((G  f))))\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  Reduce  0\mcdot{}
  THEN  RepeatFor  2  ((D  0  THENA  Auto)))
Home
Index