Step
*
of Lemma
strong-continuity3-half-squash-surject
∀[B:Type]. ((∃g:ℕ ⟶ B. Surj(ℕ;B;g))
⇒ (∀F:(ℕ ⟶ B) ⟶ ℕ. ⇃(strong-continuity3(B;F))))
BY
{ ((Auto THEN ExRepD)
THEN (Assert ⇃(strong-continuity3(ℕ;λf.(F (g o f)))) BY
(BLemma `strong-continuity3-half-squash` THEN Auto))
THEN (UnHalfSquash THENA Auto)
THEN UnHalfSquashConcl
THEN Auto) }
1
1. [B] : Type
2. g : ℕ ⟶ B
3. Surj(ℕ;B;g)
4. F : (ℕ ⟶ B) ⟶ ℕ
5. strong-continuity3(ℕ;λf.(F (g o f)))
⊢ strong-continuity3(B;F)
Latex:
Latex:
\mforall{}[B:Type]. ((\mexists{}g:\mBbbN{} {}\mrightarrow{} B. Surj(\mBbbN{};B;g)) {}\mRightarrow{} (\mforall{}F:(\mBbbN{} {}\mrightarrow{} B) {}\mrightarrow{} \mBbbN{}. \00D9(strong-continuity3(B;F))))
By
Latex:
((Auto THEN ExRepD)
THEN (Assert \00D9(strong-continuity3(\mBbbN{};\mlambda{}f.(F (g o f)))) BY
(BLemma `strong-continuity3-half-squash` THEN Auto))
THEN (UnHalfSquash THENA Auto)
THEN UnHalfSquashConcl
THEN Auto)
Home
Index