Nuprl Lemma : strong-continuity3-half-squash-surject

[B:Type]. ((∃g:ℕ ⟶ B. Surj(ℕ;B;g))  (∀F:(ℕ ⟶ B) ⟶ ℕ. ⇃(strong-continuity3(B;F))))


Proof




Definitions occuring in Statement :  strong-continuity3: strong-continuity3(T;F) surject: Surj(A;B;f) quotient: x,y:A//B[x; y] nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] prop: squash: T cand: c∧ B and: P ∧ Q uimplies: supposing a member: t ∈ T exists: x:A. B[x] all: x:A. B[x] implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  strong-continuity3_functionality_surject implies-quotient-true2 trivial-quotient-true strong-continuity3_wf surject_wf exists_wf compose_wf subtype_rel_self nat_wf strong-continuity3-half-squash
Rules used in proof :  universeEquality cumulativity functionEquality functionExtensionality applyEquality lambdaEquality dependent_functionElimination baseClosed hypothesisEquality imageMemberEquality sqequalRule independent_functionElimination independent_pairFormation because_Cache independent_isectElimination hypothesis isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[B:Type].  ((\mexists{}g:\mBbbN{}  {}\mrightarrow{}  B.  Surj(\mBbbN{};B;g))  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  B)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity3(B;F))))



Date html generated: 2017_09_29-PM-06_05_31
Last ObjectModification: 2017_09_04-AM-09_47_26

Theory : continuity


Home Index