Nuprl Lemma : strong-continuity3-half-squash-surject
∀[B:Type]. ((∃g:ℕ ⟶ B. Surj(ℕ;B;g)) 
⇒ (∀F:(ℕ ⟶ B) ⟶ ℕ. ⇃(strong-continuity3(B;F))))
Proof
Definitions occuring in Statement : 
strong-continuity3: strong-continuity3(T;F)
, 
surject: Surj(A;B;f)
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
squash: ↓T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
strong-continuity3_functionality_surject, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity3_wf, 
surject_wf, 
exists_wf, 
compose_wf, 
subtype_rel_self, 
nat_wf, 
strong-continuity3-half-squash
Rules used in proof : 
universeEquality, 
cumulativity, 
functionEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
baseClosed, 
hypothesisEquality, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[B:Type].  ((\mexists{}g:\mBbbN{}  {}\mrightarrow{}  B.  Surj(\mBbbN{};B;g))  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  B)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity3(B;F))))
Date html generated:
2017_09_29-PM-06_05_31
Last ObjectModification:
2017_09_04-AM-09_47_26
Theory : continuity
Home
Index