Nuprl Lemma : strong-continuity3-half-squash

[T:Type]. ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(strong-continuity3(T;F)) supposing (T ⊆r ℕ) ∧ (↓T)


Proof




Definitions occuring in Statement :  strong-continuity3: strong-continuity3(T;F) quotient: x,y:A//B[x; y] nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] squash: T and: P ∧ Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} implies:  Q prop: all: x:A. B[x] squash: T subtype_rel: A ⊆B and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  strong-continuity2-implies-3 implies-quotient-true2 trivial-quotient-true strong-continuity3_wf strong-continuity2_wf squash_wf subtype_rel_wf nat_wf strong-continuity2-half-squash
Rules used in proof :  independent_functionElimination applyEquality functionExtensionality universeEquality productEquality because_Cache cumulativity functionEquality dependent_functionElimination lambdaFormation independent_isectElimination rename baseClosed imageMemberEquality imageElimination axiomEquality independent_pairEquality productElimination sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[T:Type].  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity3(T;F))  supposing  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)



Date html generated: 2017_09_29-PM-06_05_30
Last ObjectModification: 2017_09_03-PM-09_27_45

Theory : continuity


Home Index