Nuprl Lemma : strong-continuity3-half-squash
∀[T:Type]. ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(strong-continuity3(T;F)) supposing (T ⊆r ℕ) ∧ (↓T)
Proof
Definitions occuring in Statement : 
strong-continuity3: strong-continuity3(T;F)
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
true: True
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
strong-continuity2-implies-3, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity3_wf, 
strong-continuity2_wf, 
squash_wf, 
subtype_rel_wf, 
nat_wf, 
strong-continuity2-half-squash
Rules used in proof : 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
universeEquality, 
productEquality, 
because_Cache, 
cumulativity, 
functionEquality, 
dependent_functionElimination, 
lambdaFormation, 
independent_isectElimination, 
rename, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[T:Type].  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity3(T;F))  supposing  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)
Date html generated:
2017_09_29-PM-06_05_30
Last ObjectModification:
2017_09_03-PM-09_27_45
Theory : continuity
Home
Index