Step
*
1
of Lemma
tree2fun_wf
1. A : Type
2. B : Type
3. C : Type
4. eq : EqDecider(A)
5. value-type(B)
6. y : A
7. f : B ⟶ W(C + A;a.case a of inl(n) => Void | inr(m) => B)
8. ∀b:B. ∀g:A ⟶ B. (tree2fun(eq;f b;g) ∈ C)
9. g : A ⟶ B@i
⊢ eval x = g y in
tree2fun(eq;f x;λi.if eq i y then x else g i fi ) ∈ C
BY
{ ((GenConclTerm ⌜g y⌝⋅ THENA Auto) THEN (CallByValueReduce 0 THENA Auto) THEN BackThruSomeHyp) }
Latex:
Latex:
1. A : Type
2. B : Type
3. C : Type
4. eq : EqDecider(A)
5. value-type(B)
6. y : A
7. f : B {}\mrightarrow{} W(C + A;a.case a of inl(n) => Void | inr(m) => B)
8. \mforall{}b:B. \mforall{}g:A {}\mrightarrow{} B. (tree2fun(eq;f b;g) \mmember{} C)
9. g : A {}\mrightarrow{} B@i
\mvdash{} eval x = g y in
tree2fun(eq;f x;\mlambda{}i.if eq i y then x else g i fi ) \mmember{} C
By
Latex:
((GenConclTerm \mkleeneopen{}g y\mkleeneclose{}\mcdot{} THENA Auto) THEN (CallByValueReduce 0 THENA Auto) THEN BackThruSomeHyp)
Home
Index