Nuprl Lemma : tree2fun_wf

[A,B,C:Type]. ∀[eq:EqDecider(A)].  ∀[w:type2tree(A;B;C)]. ∀[g:A ⟶ B].  (tree2fun(eq;w;g) ∈ C) supposing value-type(B)


Proof




Definitions occuring in Statement :  tree2fun: tree2fun(eq;w;g) type2tree: type2tree(A;B;C) deq: EqDecider(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a type2tree: type2tree(A;B;C) all: x:A. B[x] tree2fun: tree2fun(eq;w;g) Wsup: Wsup(a;b) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B pcw-pp-barred: Barred(pp) nat: int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top cw-step: cw-step(A;a.B[a]) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 less_than: a < b less_than': less_than'(a;b) true: True squash: T isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt ext-eq: A ≡ B unit: Unit it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ext-family: F ≡ G pi1: fst(t) nat_plus: + W-rel: W-rel(A;a.B[a];w) param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) pcw-steprel: StepRel(s1;s2) pi2: snd(t) isl: isl(x) pcw-step-agree: StepAgree(s;p1;w) cand: c∧ B guard: {T} sq_type: SQType(T) le: A ≤ B sq_stable: SqStable(P) has-value: (a)↓ deq: EqDecider(T)
Lemmas referenced :  type2tree_wf value-type_wf deq_wf W-elimination-facts equal_wf subtype_rel_self int_seg_wf subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt lelt_wf top_wf less_than_wf false_wf true_wf add-subtract-cancel itermAdd_wf int_term_value_add_lemma W-ext param-co-W-ext unit_wf2 it_wf param-co-W_wf pcw-steprel_wf subtype_rel_dep_function subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_rel_function int_seg_subtype sq_stable__le value-type-has-value ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry sqequalRule axiomEquality functionEquality isect_memberEquality isectElimination because_Cache extract_by_obid universeEquality lambdaFormation unionElimination unionEquality lambdaEquality voidEquality independent_functionElimination productElimination strong_bar_Induction applyEquality instantiate functionExtensionality natural_numberEquality setElimination rename dependent_set_memberEquality independent_pairFormation independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality intEquality voidElimination lessCases axiomSqEquality imageMemberEquality baseClosed imageElimination addEquality int_eqReduceTrueSq promote_hyp hypothesis_subsumption equalityElimination dependent_pairEquality inlEquality productEquality hyp_replacement applyLambdaEquality cumulativity callbyvalueReduce

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[eq:EqDecider(A)].
    \mforall{}[w:type2tree(A;B;C)].  \mforall{}[g:A  {}\mrightarrow{}  B].    (tree2fun(eq;w;g)  \mmember{}  C)  supposing  value-type(B)



Date html generated: 2019_06_20-PM-03_08_29
Last ObjectModification: 2018_08_21-PM-01_57_47

Theory : continuity


Home Index