Nuprl Lemma : type2tree_wf
∀[A,B,C:Type].  (type2tree(A;B;C) ∈ Type)
Proof
Definitions occuring in Statement : 
type2tree: type2tree(A;B;C)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type2tree: type2tree(A;B;C)
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
W_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
lambdaEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B,C:Type].    (type2tree(A;B;C)  \mmember{}  Type)
Date html generated:
2019_06_20-PM-03_08_18
Last ObjectModification:
2018_08_21-PM-01_57_27
Theory : continuity
Home
Index