Nuprl Lemma : type2tree_wf

[A,B,C:Type].  (type2tree(A;B;C) ∈ Type)


Proof




Definitions occuring in Statement :  type2tree: type2tree(A;B;C) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type2tree: type2tree(A;B;C) so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  W_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality lambdaEquality equalityTransitivity hypothesis equalitySymmetry lambdaFormation unionElimination voidEquality dependent_functionElimination independent_functionElimination axiomEquality universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B,C:Type].    (type2tree(A;B;C)  \mmember{}  Type)



Date html generated: 2019_06_20-PM-03_08_18
Last ObjectModification: 2018_08_21-PM-01_57_27

Theory : continuity


Home Index