Step
*
1
of Lemma
weak-continuity-equipollent
1. T : Type
2. m : T ⟶ ℕ
3. Bij(T;ℕ;m)
4. F : (ℕ ⟶ T) ⟶ ℕ
5. f : ℕ ⟶ T
6. g : ℕ ⟶ T
7. ∀b:ℕ. ((m (g b)) = b ∈ ℕ)
8. ∀a:T. ((g (m a)) = a ∈ T)
9. n : ℕ
10. ∀g@0:ℕ ⟶ ℕ. (((m o f) = g@0 ∈ (ℕn ⟶ ℕ))
⇒ ((F (g o (m o f))) = (F (g o g@0)) ∈ ℕ))
11. g1 : ℕ ⟶ T
12. f = g1 ∈ (ℕn ⟶ T)
⊢ (F f) = (F g1) ∈ ℕ
BY
{ (InstHyp [⌜m o g1⌝] (-3)⋅ THEN Auto) }
1
1. T : Type
2. m : T ⟶ ℕ
3. Bij(T;ℕ;m)
4. F : (ℕ ⟶ T) ⟶ ℕ
5. f : ℕ ⟶ T
6. g : ℕ ⟶ T
7. ∀b:ℕ. ((m (g b)) = b ∈ ℕ)
8. ∀a:T. ((g (m a)) = a ∈ T)
9. n : ℕ
10. ∀g@0:ℕ ⟶ ℕ. (((m o f) = g@0 ∈ (ℕn ⟶ ℕ))
⇒ ((F (g o (m o f))) = (F (g o g@0)) ∈ ℕ))
11. g1 : ℕ ⟶ T
12. f = g1 ∈ (ℕn ⟶ T)
13. (F (g o (m o f))) = (F (g o (m o g1))) ∈ ℕ
⊢ (F f) = (F g1) ∈ ℕ
Latex:
Latex:
1. T : Type
2. m : T {}\mrightarrow{} \mBbbN{}
3. Bij(T;\mBbbN{};m)
4. F : (\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}
5. f : \mBbbN{} {}\mrightarrow{} T
6. g : \mBbbN{} {}\mrightarrow{} T
7. \mforall{}b:\mBbbN{}. ((m (g b)) = b)
8. \mforall{}a:T. ((g (m a)) = a)
9. n : \mBbbN{}
10. \mforall{}g@0:\mBbbN{} {}\mrightarrow{} \mBbbN{}. (((m o f) = g@0) {}\mRightarrow{} ((F (g o (m o f))) = (F (g o g@0))))
11. g1 : \mBbbN{} {}\mrightarrow{} T
12. f = g1
\mvdash{} (F f) = (F g1)
By
Latex:
(InstHyp [\mkleeneopen{}m o g1\mkleeneclose{}] (-3)\mcdot{} THEN Auto)
Home
Index