Nuprl Lemma : weak-continuity-equipollent

T:Type. (T ~ ℕ  (∀F:(ℕ ⟶ T) ⟶ ℕ. ∀f:ℕ ⟶ T.  ⇃(∃n:ℕ. ∀g:ℕ ⟶ T. ((f g ∈ (ℕn ⟶ T))  ((F f) (F g) ∈ ℕ)))))


Proof




Definitions occuring in Statement :  equipollent: B quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q equipollent: B exists: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q so_lambda: λ2x.t[x] prop: nat: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} compose: g int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  biject-inverse nat_wf strong-continuity2-implies-weak compose_wf equipollent_wf exists_wf all_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self implies-quotient-true int_seg_properties nat_properties decidable__le le_wf full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf and_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin rename cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination lambdaEquality applyEquality functionExtensionality functionEquality cumulativity sqequalRule universeEquality because_Cache natural_numberEquality setElimination independent_isectElimination independent_pairFormation dependent_pairFormation dependent_set_memberEquality unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality hyp_replacement imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}T:Type.  (T  \msim{}  \mBbbN{}  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.    \00D9(\mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))))



Date html generated: 2017_09_29-PM-06_05_56
Last ObjectModification: 2017_07_05-PM-05_53_35

Theory : continuity


Home Index