Step
*
1
2
of Lemma
weak-continuity-implies-strong1
1. W : ∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ.  ((f = g ∈ (ℕM f ⟶ ℕ)) 
⇒ ((F f) = (F g) ∈ ℕ)))
2. F : (ℕ ⟶ ℕ) ⟶ ℕ
3. ⇃(∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ.  ((f = g ∈ (ℕM f ⟶ ℕ)) 
⇒ ((F f) = (F g) ∈ ℕ)))
4. (∃M:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f,g:ℕ ⟶ ℕ.  ((f = g ∈ (ℕM f ⟶ ℕ)) 
⇒ ((F f) = (F g) ∈ ℕ)))
⇒ ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
      ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
⊢ ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
     ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
BY
{ (RenameVar `f' (-1)
   THEN RenameVar `M' (-2)
   THEN (BLemma `prop-truncation-quot` THENA Auto)
   THEN UseWitness ⌜f M⌝⋅
   THEN newQuotientElim1 (-2)⋅
   THEN Auto) }
Latex:
Latex:
1.  W  :  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
2.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
3.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
4.  (\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
{}\mRightarrow{}  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
            \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
\mvdash{}  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
By
Latex:
(RenameVar  `f'  (-1)
  THEN  RenameVar  `M'  (-2)
  THEN  (BLemma  `prop-truncation-quot`  THENA  Auto)
  THEN  UseWitness  \mkleeneopen{}f  M\mkleeneclose{}\mcdot{}
  THEN  newQuotientElim1  (-2)\mcdot{}
  THEN  Auto)
Home
Index