Step * 1 2 of Lemma weak-continuity-principle-nat+-int-bool-double


1. (ℕ+ ⟶ ℤ) ⟶ 𝔹
2. (ℕ+ ⟶ ℤ) ⟶ 𝔹
3. : ℕ+ ⟶ ℤ
4. n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤg ∈ (ℕ+n ⟶ ℤ)} 
5. ⇃(∃n:ℕ
      ∀g:ℕ ⟶ ℤ
        (((λn.(f (n 1))) g ∈ (ℕn ⟶ ℤ))
         (if n.(f ((n 1) 1))) then else fi  if n.(g (n 1))) then else fi  ∈ ℕ)))
6. ⇃(∃n:ℕ
      ∀g:ℕ ⟶ ℤ
        (((λn.(f (n 1))) g ∈ (ℕn ⟶ ℤ))
         (if n.(f ((n 1) 1))) then else fi  if n.(g (n 1))) then else fi  ∈ ℕ)))
7. ⇃(∃n:ℕ(F (G (n 1)) ∧ (G (n 1))))
⊢ ↓∃n:ℕ(F (G (n 1)) ∧ (G (n 1)))
BY
(BLemma `squash-from-quotient` THEN Auto) }


Latex:


Latex:

1.  F  :  (\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}
2.  H  :  (\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}
3.  f  :  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}
4.  G  :  n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\} 
5.  \00D9(\mexists{}n:\mBbbN{}
            \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}
                (((\mlambda{}n.(f  (n  +  1)))  =  g)
                {}\mRightarrow{}  (if  F  (\mlambda{}n.(f  ((n  -  1)  +  1)))  then  1  else  0  fi 
                      =  if  F  (\mlambda{}n.(g  (n  -  1)))  then  1  else  0  fi  )))
6.  \00D9(\mexists{}n:\mBbbN{}
            \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbZ{}
                (((\mlambda{}n.(f  (n  +  1)))  =  g)
                {}\mRightarrow{}  (if  H  (\mlambda{}n.(f  ((n  -  1)  +  1)))  then  1  else  0  fi 
                      =  if  H  (\mlambda{}n.(g  (n  -  1)))  then  1  else  0  fi  )))
7.  \00D9(\mexists{}n:\mBbbN{}.  (F  f  =  F  (G  (n  +  1))  \mwedge{}  H  f  =  H  (G  (n  +  1))))
\mvdash{}  \mdownarrow{}\mexists{}n:\mBbbN{}.  (F  f  =  F  (G  (n  +  1))  \mwedge{}  H  f  =  H  (G  (n  +  1)))


By


Latex:
(BLemma  `squash-from-quotient`  THEN  Auto)




Home Index